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Introduction

• We want to understand how agents learn to coordinate in a dynamic
environment

• In the global game approach to coordination, information determines
how agents coordinate

◮ In most models, information comes from various exogenous signals
◮ In reality, agents learn from endogenous sources (prices, aggregates,

social interactions, ...)

• Informativeness of endogenous sources depends on agents’ decisions

• We find that the interaction of coordination and learning generates
interesting dynamics

◮ The mechanism dampens the impact of small shocks...
◮ ...but amplifies and propagates large shocks
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Overview of the Mechanism

• Dynamic coordination game

◮ Payoff of action depends on actions of others and on unobserved
fundamental θ

◮ Agents use private and public information about θ
◮ Observables (output,...) aggregate individual decisions

• These observables are non-linear aggregators of private information

◮ When public information is very good or very bad, agents rely less on
their private information

◮ The observables becomes less informative
◮ Learning is impeded and the economy can deviate from fundamental

for a long time
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Roadmap

• Stylized game-theoretic framework

◮ Characterize equilibria and derive conditions for uniqueness
◮ Explore relationship between decisions and information
◮ Study the planner’s problem
◮ Provide numerical examples and simulations along the way
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Abbreviated Literature Review

• Learning from endogenous variables

◮ Angeletos and Werning (2004); Hellwig, Mukherji and Tsyvinksi
(2005): static, linear-Gaussian framework (constant informativeness)

◮ Angeletos, Hellwig and Pavan (2007): dynamic environment,
non-linear learning, fixed fundamental, stylized cannot be generalized

◮ Chamley (1999): stylized model with cycles, learning from actions of
others, public signal is fully revealing upon regime change and
uninformative otherwise
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Model

• Infinite horizon model in discrete time

• Mass 1 of risk-neutral agents indexed by i ∈ [0, 1]

• Agents live for one period and are then replaced by new entrant

• Each agent has a project that can either be undertaken or not
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Model

Realizing the project pays

πit = (1− β) θt + βmt − c

where:

• θt is the fundamental of the economy

◮ Two-state Markov process θt ∈ {θl , θh}, θh > θl with

P(θt = θj |θt−1 = θi) = Pij and Pii >
1

2

• mt is the mass of undertaken projects plus some noise

• β determines the degree of complementarity in the agents payoff

• c > 0 is a fixed cost of undertaking the project
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Information

Agents do not observe θ directly but have access to several sources of
information

1 A private signal vit
◮ Drawn from cdf Gθ for θ ∈ {θl , θh} with support v ∈ [a, b]
◮ Gθ are continuously differentiable with pdf gθ
◮ Monotone likelihood ratio property: gh(v)/gl (v) is increasing

2 An exogenous public signal zt drawn from cdf F z
θ and pdf f zθ

3 An endogenous public signal mt

◮ Agents observe the mass of projects realized with some additive
noise νt

mt(θ, v̂) = mass of projects realized + νt

◮ νt ∼ iid cdf F ν with associated pdf f ν

◮ Assume without loss of generality that F ν has mean 0
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Timing

Agents start with the knowledge of past public signals zt and mt

1 θt is realized

2 Private signals vit are observed

3 Decisions are made

4 Public signals mt and zt are observed
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Information

Information sets:

• At time t, the public information is

Ft =
{
mt−1, z t−1

}

• Agent i ’s information is

Fit = {vit} ∪ Ft

Beliefs:

• Beliefs of agent i about the state of the world

pit = P (θ = θh|Fit)

• Beliefs of an outside observer without private information

pt = P (θ = θh|Ft)
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Agent’s Problem

Agents i realizes the project if its expected value is positive

E [(1− β)θt + βmt − c |Fit ] > 0

For now, restrict attention to monotone strategy equilibria:

• There is a threshold v̂t such that

Agent iundertakes his project ⇔ vit ≥ v̂t

• Later, we show that all equilibria have this form

• With this threshold strategy, the endogenous public signal is

mt = 1− Gθ (v̂t)
︸ ︷︷ ︸

signal

+ νt
︸︷︷︸

noise
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Dynamics of Information

• For a given signal st , beliefs are updated using the likelihood ratio

LRit =
P (st | θh,Fit)

P (st | θl ,Fit)

• Using Bayes’ rule, we have the following updating rule

P (θh | pit , st) =
1

1 + 1−pit
pit

LR−1
it

:= L (pit , LRit)
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Dynamics of Information

• At the beginning of every period, the individual beliefs are given by

pit (pt , vit) = L

(

pt ,
gh (vit)

gl (vit)

)

• By the end of the period, public beliefs pt are updated according to

pendt = L

(

pt ,
f zh (zt)

f zl (zt)

P (mt |θh,Ft)

P (mt |θl ,Ft)

)

• Moving to the next period,

pt+1 = pendt Phh +
(
1− pendt

)
Plh

Full expression for dynamic of p
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Dynamics of Information

Lemma 1
The distribution of individual beliefs is entirely described by (θ, p):

P (pi ≤ p̃|θ, p) =

ˆ

1I




1

1 + 1−p
p

gl (vi )
gh(vi )

≤ p̃



 dGθ (vi) .

• Conditional on θ agents know that all signals come from Gθ

• From Gθ and p they can construct the distribution of beliefs

• Rich structure of higher-order beliefs in the background
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Monotone Strategy Equilibrium

Definition
A monotone strategy equilibrium is a threshold function v̂(p) and an
endogenous public signal m such that

1 Agent i realizes his project if and only if his vi is higher than v̂(p)

2 The public signal m is defined by m = 1− Gθ (v̂ (p)) + ν

3 Public and private beliefs are consistent with Bayesian learning

Given the payoff function

π (vi ; v̂ , p) = E [(1− β) θ + β (1− Gθ (v̂))− c | p, vi ]

the threshold function v̂ (p) satisfies

π (v̂(p); v̂ (p), p) = 0

for every p.
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Equilibrium Characterization: Complete Information

Lemma 2 (Complete info)
If β ≥ c − (1− β) θ ≥ 0, the economy admits multiple equilibria under

complete information.

In particular, there is an equilibrium in which all projects are undertaken

and one equilibrium in which no projects are undertaken.
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Equilibrium Characterization: Incomplete Information

Assumption 1
The likelihood ratio gh

gl
is differentiable and there exists ρ > 0 such that

∣
∣
∣
∣
∣

(
gh

gl

)′
∣
∣
∣
∣
∣
≥ ρ.

Proposition 1 (Incomplete info)
Under assumption 1,

1 If β
1−β

≤ θh − θl , all equilibria are monotone,

2 If β
1−β

≤
ρPhlPlh

max{‖gh‖,‖gl‖}
3 , there exists a unique equilibrium.

Uniqueness requires:

1 an upper bound on β; Role of β

2 enough beliefs dispersion. Role of dispersion
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Endogenous vs Exogenous Information

Sample path with only exogenous information:

0 200 400 600 800 1000
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1−Gθ(v̂)

θ

Sample path with only endogenous information:

0 200 400 600 800 1000
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0.4

0.6

0.8

1.0

1−Gθ(v̂)

θ

From now on, focus on endogenous public signal only: Var(zt) → ∞
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Endogenous Information

Lemma 3
If F ν ∼ N (0, σ2

ν), then the mutual information between θ and m is

I (θ;m) = p (1− p)
∆2

2σ2
ν

+ O
(
∆3

)

where ∆ = Gl (v̂ )− Gh (v̂) ≥ 0.

Version of the Lemma with general F ν : General Lemma

The informativeness of the public signal depends on:

1 The current beliefs p

2 The amount of noise σν added to the signal

3 The difference between Gl (v̂ ) and Gh (v̂ )

Point 3 is the source of endogenous information. Definition of mutual information
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Signal vs. Noise

Example 1: Normal case with different means µh > µl
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Signal distance ∆ = Gl (v̂)− Gh(v̂ )

Result: more information when v̂ = µh+µl

2 , i.e., 0 ≪ m ≪ 1. Alt. signals
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Inference from Endogenous Signal

mt = 1− Gθ (v̂t)
︸ ︷︷ ︸

signal

+ νt
︸︷︷︸

noise

Example 1: Normal case with different means µh > µl

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

g
θ

v̂

gl gh

0

1

0 0.2 0.4 0.6 0.8 1

1
−
G
θ

1− Gl (v̂ )± σν 1− Gh(v̂)± σν
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Signal vs. Noise

Example 2: Information contained in m under the equilibrium v̂
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i
o
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Result: in the extremes of the state-space, the endogenous signal reveals
no information Parameters
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Coordination Traps

Proposition 2 (Coordination traps)
Under the conditions of proposition 1,

1 If (1− β) θl ≤ c ≤ (1− β) θh, there exists p ∈ [0, 1], such that for

all p ≤ p, v̂ (p) = b, i.e., nobody undertakes the project;

2 If (1− β) θl + β ≤ c ≤ (1− β) θh + β, there exists p ∈ [0, 1], such
that for all p ≥ p, v̂ (p) = a, i.e., everyone undertakes the project;

3 For p ≤ p and p ≥ p, m contains no information about θ.

Furthermore, the regions with no and full activity widen with the degree

of complementarity β:

p′ (β) < 0 and p′ (β) > 0.

We refer to the set [0, p] ∪ [p̄, 1] has the no-learning zone. Details

• Agents disregard their private information and all act together

• m is independent of the true state of the world
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Signal vs. Noise: Role of β

Example 2: Information contained in m under the equilibrium v̂

0.0 0.2 0.4 0.6 0.8 1.0

Current beliefs p
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β = 0

β = 0.3

Result: the complementarity lowers informativeness and widens the
no-learning zones Parameters Details

• for p > 1
2 , higher β implies more projects realized (v̂ → a)

• for p < 1
2 , higher β implies fewer projects realized (v̂ → b)
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Complementarity and the Persistence of Recession

To summarize:

• Higher complementarity reduces informativeness of public signals in
the extremes of the state space

• In the no-learning zone, agents get no information from public signal

As a result, an economy with high complementarity might

• resist well to brief shocks;

• magnify the duration of booms/recessions after a lengthier shock.
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Persistence of Recession

The economy with high complementarity resists well to brief shocks...
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...but recovers slowly after lengthy shocks.
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”Bubble-like” Behavior

The complementarity makes the response to ν shocks highly non-linear.

2× σf positive shock to ν:
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4× σf positive shock to ν:
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Efficiency

Agents don’t internalize the impact of their decision on m.

There are two externalities:

1 Complementarity: a higher m increases the payoff of others

2 Information: m influences the amount of information revealed

We adopt the formulation of Angeletos and Pavan (2007):

• Planner cannot aggregate the information dispersed across agents

• He maximizes the ex-ante welfare of agents according to their own
individual beliefs

V (p) = max
v̂

Eθ,ν






ˆ b

v̂

Eθ,ν [πit(θ, v̂ )|Fit ]
︸ ︷︷ ︸

Agent i ’s expected payoff

+γV (p′)

∣
∣
∣
∣
∣
∣
∣

Ft






subject to the same law of motion for the public beliefs: p′(p, v̂ ).
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Dynamics in the Efficient Allocation

Response to shock in the efficient allocation vs equilibrium

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

θ

Efficient m

Equilibrium m

Planner’s decision compared to equilibrium:

Complementarity Information externality
p low more agents act more agents act
p high more agents act less agents act

The planner responds to recessions more than to booms.
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Conclusion

Summary

• We have built a model in which the interaction of coordination
motives and endogenous information generates persistent episodes of
expansions and contractions.

• Optimal government intervention reduces the length of recessions
while keeping the expansions mostly unchanged.

◮ Large government spending multiplier?

Extensions

• Generalized payoff function and endogenous public signal

• Intensive margin and unbounded distributions

• Long-lived agents with dynamic decision

Applications

• Unemployment fluctuations, investment dynamics, currency attacks,
bank runs, asset pricing, etc.
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Dynamic of Information

The public beliefs evolve according to

p′ =
Phhpf

z
h (z) f (m − 1 + Gh (v̂)) + Plh(1− p)f zl (z) f (m − 1 + Gl (v̂))

pf zh (z) f (m − 1 + Gh (v̂ )) + (1− p)f zl (z) f (m − 1 + Gl (v̂ ))

Details

30 / 30



General Statement of Mutual Information Lemma

Lemma 4
The mutual information between θ and m is

I (θ;m) = p (1− p)∆2Γ + O
(
∆3

)

where ∆ = Gl (v̂ )− Gh (v̂) ≥ 0 and

Γ =

ˆ

[

−
d2f ν

dν2
+

1

2f ν

(
df ν

dν

)2
]

dν.

If F ν ∼ N (0, σ2
ν), then Γ = (2σ2

ν)
−1.

Return
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Mutual Information

Definition 1
The mutual information between θ and m is

I (θ;m) = H (θ)− H (θ|m) =
∑

θ∈{θL,θH}

ˆ

m

P(θ,m) log

(
P(θ,m)

P(θ)P(m)

)

dm

where H denotes the entropy.

Return
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Numerical Example

Description Value

Low fundamental value θL = 0
High fundamental value θH = 1

Persistence of fundamental q = 0.99
Cost of investment c = 0.5
Time discount γ = 0.5

Private signal in state H GH ∼ N (0.8, 0.4) truncated on [0, 1]
Private signal in state L GL ∼ N (0.2, 0.4) truncated on [0, 1]
Noise in public signal F ∼ N (0, 0.1)

Return

30 / 30



Signal vs. Noise

Example 1.1: Truncated normals case with different variances σh < σl :
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Result: informativeness of signal depends on underlying distributions
Return
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Uniqueness: Intuition

Recall the payoff function:

π (vi ; v̂ , p) = (1− β)Ei [θ]
︸ ︷︷ ︸

Fundamental

+ βEi [1− Gθ (v̂)]
︸ ︷︷ ︸

Complementarity

− c

we’re looking for

π (v̂ ; v̂ , p) = (1− β)E [θ|v̂ ] + βE [1− Gθ (v̂) |v̂ ]− c

Example: normal case with different means µh > µl
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Role of complementarity β
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β = 0

β = 0.05

β = 0.1

β = 0.2

Result: Uniqueness requires upper bound on complementarity Return
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Role of belief dispersion
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high dispersion

low dispersion

Result: Uniqueness requires enough belief dispersion Return

• Distributions gh, gl sufficiently dispersed
• Fundamental sufficiently volatile (Phl and Plh high enough)
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Coordination Traps
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higher p

p

p

m = 0

m = 1

Result: endogenous channel uninformative for extreme values of p
• for p < p , no project realized: v̂ = b, θl and θh are indistinguishable
1− Gh (b) = 1− Gl (b) = 0

• for p > p, all projects realized: v̂ = a, θl and θh are indistinguishable
1− Gh (a) = 1− Gl (a) = 1

Return
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Signal vs. Noise: Role of β
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p < 1
2

p > 1
2

β = .02
β = .1

Result: high complementarity induces convergence in strategies
• for p > 1

2 , higher β implies more projects realized (v̂ → a)
• for p < 1

2 , higher β implies fewer projects realized (v̂ → b)
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