Learning to Coordinate Very preliminary - Comments welcome

Edouard Schaal¹ Mathieu Taschereau-Dumouchel²

¹New York University

²Wharton School University of Pennsylvania

- We want to understand how agents learn to coordinate in a dynamic environment
- In the global game approach to coordination, information determines how agents coordinate
 - In most models, information comes from various exogenous signals
 - In reality, agents learn from endogenous sources (prices, aggregates, social interactions, ...)
 - Informativeness of endogenous sources depends on agents' decisions
- We find that the interaction of coordination and learning generates interesting dynamics
 - The mechanism dampens the impact of small shocks...
 - ...but amplifies and propagates large shocks

- Dynamic coordination game
 - \blacktriangleright Payoff of action depends on actions of others and on unobserved fundamental θ
 - Agents use private and public information about θ
 - Observables (output,...) aggregate individual decisions
- These observables are non-linear aggregators of private information
 - When public information is very good or very bad, agents rely less on their private information
 - The observables becomes less informative
 - Learning is impeded and the economy can deviate from fundamental for a long time

- Stylized game-theoretic framework
 - Characterize equilibria and derive conditions for uniqueness
 - Explore relationship between decisions and information
 - Study the planner's problem
 - Provide numerical examples and simulations along the way

- · Learning from endogenous variables
 - Angeletos and Werning (2004); Hellwig, Mukherji and Tsyvinksi (2005): static, linear-Gaussian framework (constant informativeness)
 - Angeletos, Hellwig and Pavan (2007): dynamic environment, non-linear learning, fixed fundamental, stylized cannot be generalized
 - Chamley (1999): stylized model with cycles, learning from actions of others, public signal is fully revealing upon regime change and uninformative otherwise

- Infinite horizon model in discrete time
- Mass 1 of risk-neutral agents indexed by $i \in [0, 1]$
- Agents live for one period and are then replaced by new entrant
- Each agent has a project that can either be undertaken or not

Model

Realizing the project pays

$$\pi_{it} = (1 - \beta) \theta_t + \beta m_t - c$$

where:

• θ_t is the **fundamental** of the economy

▶ Two-state Markov process $\theta_t \in {\theta_l, \theta_h}$, $\theta_h > \theta_l$ with

$$m{P}(heta_t= heta_j| heta_{t-1}= heta_i)=m{P}_{ij}$$
 and $m{P}_{ii}>rac{1}{2}$

- *m_t* is the mass of undertaken projects plus some noise
- β determines the degree of complementarity in the agents payoff
- c > 0 is a fixed cost of undertaking the project

Agents do not observe $\boldsymbol{\theta}$ directly but have access to several sources of information

- 1 A private signal vit
 - ▶ Drawn from cdf G_{θ} for $\theta \in \{\theta_l, \theta_h\}$ with support $v \in [a, b]$
 - G_{θ} are continuously differentiable with pdf g_{θ}
 - Monotone likelihood ratio property: $g_h(v)/g_l(v)$ is increasing
- 2 An exogenous public signal z_t drawn from cdf F_{θ}^z and pdf f_{θ}^z
- 3 An endogenous public signal m_t
 - \blacktriangleright Agents observe the mass of projects realized with some additive noise ν_t

 $m_t(heta, \hat{v}) = ext{mass of projects realized} +
u_t$

- $u_t \sim \text{iid cdf } F^{\nu}$ with associated pdf f^{ν}
- Assume without loss of generality that F^{ν} has mean 0

Agents start with the knowledge of past public signals z_t and m_t

- **1** θ_t is realized
- **2** Private signals v_{it} are observed
- 3 Decisions are made
- 4 Public signals m_t and z_t are observed

Information

Information sets:

• At time t, the public information is

$$\mathcal{F}_t = \left\{ m^{t-1}, z^{t-1} \right\}$$

• Agent *i*'s information is

$$\mathcal{F}_{it} = \{\mathbf{v}_{it}\} \cup \mathcal{F}_t$$

Beliefs:

• Beliefs of agent *i* about the state of the world

$$p_{it} = P\left(\theta = \theta_h | \mathcal{F}_{it}\right)$$

• Beliefs of an outside observer without private information

$$p_t = P\left(\theta = \theta_h | \mathcal{F}_t\right)$$

Agents *i* realizes the project if its expected value is positive

$$E\left[(1-\beta)\theta_t + \beta m_t - c|\mathcal{F}_{it}\right] > 0$$

For now, restrict attention to monotone strategy equilibria:

• There is a threshold \hat{v}_t such that

Agent iundertakes his project $\Leftrightarrow v_{it} \geq \hat{v}_t$

- Later, we show that all equilibria have this form
- With this threshold strategy, the endogenous public signal is

$$m_{t} = \underbrace{1 - G_{\theta}\left(\hat{v}_{t}\right)}_{\text{signal}} + \underbrace{\nu_{t}}_{\text{noise}}$$

• For a given signal s_t , beliefs are updated using the likelihood ratio

$$LR_{it} = \frac{P\left(s_{t} \mid \theta_{h}, \mathcal{F}_{it}\right)}{P\left(s_{t} \mid \theta_{l}, \mathcal{F}_{it}\right)}$$

• Using Bayes' rule, we have the following updating rule

$$P\left(\theta_{h} \mid p_{it}, s_{t}\right) = \frac{1}{1 + \frac{1 - p_{it}}{p_{it}} L R_{it}^{-1}} := \mathcal{L}\left(p_{it}, L R_{it}\right)$$

Dynamics of Information

• At the beginning of every period, the individual beliefs are given by

$$p_{it}\left(p_{t}, v_{it}\right) = \mathcal{L}\left(p_{t}, \frac{g_{h}\left(v_{it}\right)}{g_{l}\left(v_{it}\right)}\right)$$

• By the end of the period, public beliefs p_t are updated according to

$$p_{t}^{end} = \mathcal{L}\left(p_{t}, \frac{f_{h}^{z}\left(z_{t}\right)}{f_{l}^{z}\left(z_{t}\right)} \frac{P\left(m_{t}|\theta_{h}, \mathcal{F}_{t}\right)}{P\left(m_{t}|\theta_{l}, \mathcal{F}_{t}\right)}\right)$$

Moving to the next period,

$$p_{t+1} = p_t^{end} P_{hh} + \left(1 - p_t^{end}\right) P_{lh}$$

▶ Full expression for dynamic of *p*

Lemma 1

The distribution of individual beliefs is entirely described by (θ, p) :

$$P\left(p_i \leq ilde{p} | heta, p
ight) = \int 1 \!\! 1 \left(rac{1}{1 + rac{1-p}{p} rac{g_i(v_i)}{g_i(v_i)}} \leq ilde{p}
ight) d \mathcal{G}_ heta\left(v_i
ight).$$

- Conditional on θ agents know that all signals come from G_{θ}
- From G_{θ} and p they can construct the distribution of beliefs
- Rich structure of higher-order beliefs in the background

Definition

A monotone strategy equilibrium is a threshold function $\hat{v}(p)$ and an endogenous public signal m such that

- **1** Agent *i* realizes his project if and only if his v_i is higher than $\hat{v}(p)$
- 2 The public signal *m* is defined by $m = 1 G_{\theta} \left(\hat{v} \left(p \right) \right) + \nu$
- 3 Public and private beliefs are consistent with Bayesian learning

Given the payoff function

$$\pi\left(\mathbf{v}_{i};\hat{\mathbf{v}},\boldsymbol{p}\right)=E\left[\left(1-\beta\right)\theta+\beta\left(1-\mathcal{G}_{\theta}\left(\hat{\mathbf{v}}\right)\right)-c\mid\boldsymbol{p},\boldsymbol{v}_{i}\right]$$

the threshold function $\hat{v}(p)$ satisfies

 $\pi\left(\hat{v}(p);\hat{v}(p),p\right)=0$

for every p.

Lemma 2 (Complete info)

If $\beta \ge c - (1 - \beta) \theta \ge 0$, the economy admits multiple equilibria under complete information.

In particular, there is an equilibrium in which all projects are undertaken and one equilibrium in which no projects are undertaken.

Assumption 1

The likelihood ratio $\frac{g_h}{g_l}$ is differentiable and there exists $\underline{\rho} > 0$ such that

$$\left| \left(\frac{g_h}{g_l} \right)' \right| \geq \underline{\rho}.$$

Proposition 1 (Incomplete info)

Under assumption 1,

1 If
$$\frac{\beta}{1-\beta} \le \theta_h - \theta_l$$
, all equilibria are monotone,
2 If $\frac{\beta}{1-\beta} \le \frac{\rho P_{hl} P_{lh}}{\max\{\|g_h\|, \|g_l\|\}^3}$, there exists a unique equilibrium.

Uniqueness requires:

- **1** an upper bound on β ; **Prode of** β
- 2 enough beliefs dispersion. Role of dispersion

Endogenous vs Exogenous Information

Sample path with only exogenous information:

Sample path with only endogenous information:

From now on, focus on endogenous public signal only: $Var(z_t) \rightarrow \infty$

Endogenous Information

Lemma 3 If $F^{\nu} \sim \mathcal{N}(0, \sigma_{\nu}^2)$, then the mutual information between θ and m is

$$I(\theta; m) = p(1-p)\frac{\Delta^2}{2\sigma_{\nu}^2} + O(\Delta^3)$$

where $\Delta = G_l(\hat{v}) - G_h(\hat{v}) \geq 0$.

Version of the Lemma with general F^{ν} : \bigcirc General Lemma

The informativeness of the public signal depends on:

- The current beliefs p
- 2 The amount of noise σ_{ν} added to the signal
- **3** The difference between $G_l(\hat{v})$ and $G_h(\hat{v})$

Point 3 is the source of endogenous information. • Definition of mutual information

Signal vs. Noise

Example 1: Normal case with different means $\mu_h > \mu_I$

Result: more information when $\hat{v} = \frac{\mu_h + \mu_l}{2}$, i.e., $0 \ll m \ll 1$. Att. signals

Inference from Endogenous Signal

$$m_t = \underbrace{1 - G_\theta(\hat{v}_t)}_{\text{signal}} + \underbrace{\nu_t}_{\text{noise}}$$

Example 1: Normal case with different means $\mu_h > \mu_I$

21/30

Example 2: Information contained in *m* under the **equilibrium** \hat{v}

Result: in the extremes of the state-space, the endogenous signal reveals no information Parameters

Coordination Traps

Proposition 2 (Coordination traps) Under the conditions of proposition 1,

1 If $(1 - \beta) \theta_l \le c \le (1 - \beta) \theta_h$, there exists $\underline{p} \in [0, 1]$, such that for all $p \le \underline{p}$, $\hat{v}(p) = b$, i.e., nobody undertakes the project;

② If (1 − β) θ_I + β ≤ c ≤ (1 − β) θ_h + β, there exists p̄ ∈ [0, 1], such that for all p ≥ p̄, v̂ (p) = a, i.e., everyone undertakes the project;

3 For $p \leq \underline{p}$ and $p \geq \overline{p}$, *m* contains no information about θ .

Furthermore, the regions with no and full activity widen with the degree of complementarity β :

 $\overline{p}'(\beta) < 0 \text{ and } \underline{p}'(\beta) > 0.$

We refer to the set $[0, p] \cup [\bar{p}, 1]$ has the **no-learning zone**. \bigcirc **Details**

- · Agents disregard their private information and all act together
- *m* is independent of the true state of the world

Signal vs. Noise: Role of β

Example 2: Information contained in *m* under the **equilibrium** \hat{v}

Result: the complementarity lowers informativeness and widens the no-learning zones • Parameters • Details

- for $p > \frac{1}{2}$, higher β implies more projects realized $(\hat{v} \rightarrow a)$
- for $p < \frac{1}{2}$, higher β implies fewer projects realized $(\hat{v} \rightarrow b)$

To summarize:

- Higher complementarity reduces informativeness of public signals in the extremes of the state space
- In the no-learning zone, agents get no information from public signal
- As a result, an economy with high complementarity might
 - resist well to brief shocks;
 - magnify the duration of booms/recessions after a lengthier shock.

Persistence of Recession

The economy with high complementarity resists well to brief shocks...

...but recovers slowly after **lengthy** shocks.

"Bubble-like" Behavior

The complementarity makes the response to $\boldsymbol{\nu}$ shocks highly non-linear.

 $4 \times \sigma^f$ positive shock to ν :

Agents don't internalize the impact of their decision on m.

There are two externalities:

- **①** Complementarity: a higher *m* increases the payoff of others
- **2** Information: *m* influences the amount of information revealed

We adopt the formulation of Angeletos and Pavan (2007):

- Planner cannot aggregate the information dispersed across agents
- He maximizes the ex-ante welfare of agents according to their own individual beliefs

$$V(p) = \max_{\hat{v}} E_{\theta,\nu} \left[\int_{\hat{v}}^{b} \underbrace{E_{\theta,\nu} \left[\pi_{it}(\theta, \hat{v}) | \mathcal{F}_{it} \right]}_{\text{Agent } i \text{'s expected payoff}} + \gamma V(p') \middle| \mathcal{F}_{t} \right]$$

subject to the same law of motion for the public beliefs: $p'(p, \hat{v})$.

Dynamics in the Efficient Allocation

Response to shock in the efficient allocation vs equilibrium

Planner's decision compared to equilibrium:

	Complementarity	Information externality
p low	more agents act	more agents act
p high	more agents act	less agents act

The planner responds to recessions more than to booms.

Summary

- We have built a model in which the interaction of coordination motives and endogenous information generates persistent episodes of expansions and contractions.
- Optimal government intervention reduces the length of recessions while keeping the expansions mostly unchanged.
 - Large government spending multiplier?

Extensions

- Generalized payoff function and endogenous public signal
- Intensive margin and unbounded distributions
- Long-lived agents with dynamic decision

Applications

• Unemployment fluctuations, investment dynamics, currency attacks, bank runs, asset pricing, etc.

The public beliefs evolve according to

$$p' = \frac{P_{hh}pf_{h}^{z}(z)f(m-1+G_{h}(\hat{v})) + P_{lh}(1-p)f_{l}^{z}(z)f(m-1+G_{l}(\hat{v}))}{pf_{h}^{z}(z)f(m-1+G_{h}(\hat{v})) + (1-p)f_{l}^{z}(z)f(m-1+G_{l}(\hat{v}))}$$

Lemma 4 The mutual information between θ and m is

$$I(heta;m) = p(1-p)\Delta^2\Gamma + O(\Delta^3)$$

where $\Delta = \mathit{G}_{l}\left(\hat{\mathit{v}}
ight) - \mathit{G}_{h}\left(\hat{\mathit{v}}
ight) \geq 0$ and

$$\Gamma = \int \left[-\frac{d^2 f^{\nu}}{d\nu^2} + \frac{1}{2f^{\nu}} \left(\frac{df^{\nu}}{d\nu} \right)^2 \right] d\nu.$$

If $F^{
u} \sim \mathcal{N}(0, \sigma_{
u}^2)$, then $\Gamma = (2\sigma_{
u}^2)^{-1}$.

Definition 1

The mutual information between θ and m is

$$I(\theta; m) = H(\theta) - H(\theta|m) = \sum_{\theta \in \{\theta_L, \theta_H\}} \int_m P(\theta, m) \log\left(\frac{P(\theta, m)}{P(\theta)P(m)}\right) dm$$

where H denotes the entropy.

Return

Description	Value			
Low fundamental value	$ heta_L = 0$			
High fundamental value	$ heta_{H}=1$			
Persistence of fundamental	q=0.99			
Cost of investment	c=0.5			
Time discount	$\gamma = 0.5$			
Private signal in state H	$\mathcal{G}_{H} \sim \mathcal{N}(0.8, 0.4)$ truncated on $[0, 1]$			
Private signal in state L	$\mathit{G_L} \sim \mathcal{N}(0.2, 0.4)$ truncated on $[0, 1]$			
Noise in public signal	${\sf F} \sim {\cal N}(0,0.1)$			

Signal vs. Noise

Example 1.1: Truncated normals case with different variances $\sigma_h < \sigma_l$:

Result: informativeness of signal depends on underlying distributions

Uniqueness: Intuition

Recall the payoff function:

$$\pi \left(v_{i}; \hat{v}, p \right) = \underbrace{\left(1 - \beta \right) \operatorname{E}_{i} \left[\theta \right]}_{\text{Fundamental}} + \underbrace{\beta \operatorname{E}_{i} \left[1 - G_{\theta} \left(\hat{v} \right) \right]}_{\text{Complementarity}} - c$$

we're looking for

$$\pi\left(\hat{\mathbf{v}};\hat{\mathbf{v}},\boldsymbol{\rho}\right) = (1-\beta)\operatorname{E}\left[\theta|\hat{\mathbf{v}}\right] + \beta\operatorname{E}\left[1 - \mathcal{G}_{\theta}\left(\hat{\mathbf{v}}\right)|\hat{\mathbf{v}}\right] - c$$

Example: normal case with different means $\mu_h > \mu_I$

Role of complementarity β

Result: Uniqueness requires upper bound on complementarity

Role of belief dispersion

Result: Uniqueness requires enough belief dispersion **Result**

- Distributions g_h , g_l sufficiently dispersed
- Fundamental sufficiently volatile (*P_{hl}* and *P_{lh}* high enough)

Coordination Traps

Result: endogenous channel uninformative for extreme values of *p*

- for $p < \underline{p}$, no project realized: $\hat{v} = b$, θ_l and θ_h are indistinguishable $1 G_h(\overline{b}) = 1 G_l(b) = 0$
- for $p > \overline{p}$, all projects realized: $\hat{v} = a$, θ_l and θ_h are indistinguishable $1 G_h(a) = 1 G_l(a) = 1$

Signal vs. Noise: Role of β

Result: high complementarity induces convergence in strategies

- for $p > \frac{1}{2}$, higher β implies more projects realized $(\hat{v} \rightarrow a)$
- for $p < \frac{1}{2}$, higher β implies fewer projects realized $(\hat{v} \rightarrow b)$